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OPTIMIZATION IN ANALYTICAL CHEMISTRY USING ROBUST ESTIMATION

Gregory R. Phillips and Edward M. Eyring
Department of Chemistry

University of Utah
Salt Lake City, Utah 84112

(801) 581-8658

ABSTRACT

Analytical chemists have long been concerned with obtaining optimal

experimental conditions. Robust estimation provides an additional method of

increasing the efficiency of an analytical technique. This is illustrated

for the determination of the "true" value, p, of a quantity which is

measured with error. The least squares estimator of p is compared with the

median and Huber estimates over a variety of error distributions in the

vicinity of the Gaussian distribution. Simulation allows examination of the

efficiency of an estimation procedure as a function of the error

distribution. Results are presented which show the least squares estimator

of p to be much more sensitive to a non-Gaussian error distribution than --

generally realized in the chemical community. Additionally, the arguments

commonly used to support least squares estimation are critically examined.
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INTRODUCTION

Experimental optimization has been an important subject in analytical

chemistry for many years now. This term often, though not always, suggests

a technique for increasing the precision of analytical measurements (e.g.

increased sensitivity, improved reliability, or decreased cost). Examples

of optimization in chemistry range from the development of self-optimizing

instruments(I) to the use of expert systems in methods development(2).

The efficiency of an analytical technique depends on more than just the

precision of the measurement process. Eckschlager and Stepanek(3) have

characterized an analytical system as two relatively independent subsystems.

In the first of these two subsystems, an analytical apparatus extracts

information from a sample and encodes it in an analytical signal (e.g.

voltage); in the second, this signal is decoded to yield information. The

information gained from a chemical analysis depends on the efficiency of the

overall system, and can be limited by either of the two subsystems. Most of

the optimization done in analytical chemistry has been concerned with the

first subsystem.

The problem of decoding analytical signals lies within the realm of

chemometrics, which has been defined as the discipline of using mathematical

and statistical techniques to extract information from measurements(4).

Chemists often associate chemometrics with sophisticated multidimensional

techniques, expert systems, or artificial intelligence. In spite of very

elegant work in these areas, the vast majority of chemometric techniques

actually used in chemical laboratories are simple univariate statistics,

such as least squares estimates of the mean, standard deviation, or

regression coefficients. These statistics are usually justified in

analytical texts by the assumption of Gaussian, or normal, errors.
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The importance of the normal error distribution to least squares

techniques, along with the consequences of departures from this assumption,

has received much attention from statisticians; however. most chemists seem

to be largely unaware of its importance. Ames and Szonyi(5) and Filliben(6)

have warned of the possibility of drawing incorrect conclusions when the

normality assumption is violated, and have proposed the testing of error

distributions. Tests for normality require many more observations than are

generally available in chemical experiments. Even when an adequate number

of data points is available, it is most unusual for a chemist to apply any

normality test. Studies in enzyme kinetics have both supported(7,8) and

contradicted(9-11) the assumption of normal error distributions in chemical

data. In a particularly impressive study, Clancy(12) has examined 250 error

distributions based on 50,000 chemical analyses and found less than 15% of

the distributions can be considered normal for the purpose of applying

commnon statistical techniques.

Many statistics books for the research worker deal exclusively with

least squares methods, and only invoke the assumption of independent,

normally distributed errors for the validity of confidence intervals and

statistical tests calculated using least squares results. Thus it is not

surprising that many chemists believe least squares estimates are the

* optimum statistics whatever the error distribution. The efficiency of these

estimates rapidly decreases under mild departures from normality, as has

been demonstrated by several recent studies and is discussed in further

detail below. In terminology familiar to the analytical chemist, nonnormal

errors can lead to poor precision in least squares parameter estimates and

inaccuracy in statistical tests and confidence intervals.
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Much work is currently underway in statistics in the development of

robust estimation, as illustrated by references 13-15. A statistic is

called robust if it is insensitive to mild departures from the underlying

assumptions and is only slightly inefficient relative to least squares when

these assumptions are true. This inefficiency under ideal circumstances is

often referred to as the premium paid for protection under nonideal

conditions. Additionally, robust methods are also resistant to the presence

of any outliers in the data. Unlike statisticians, chemists have paid only

passing attention to these developments. Isenburg(16) has proposed the

method of moments as an alternative to least squares iterative reconvolution

in the analysis of pulse fluorometric data. Phillips and Eyring(17) and

Massart et al.(18) have compared the performance of least squares regression

and robust regression, concluding that robust regression often outperforms

least squares regression in the analysis of chemical data. The main

emphasis behind these articles has been the insensitivity of robust

estimation to a small number of errors in the data.

The present paper is concerned with robust estimation as a method of

'V increasing the efficiency of an analytical technique. This can best be

illustrated by the estimation of the "true" value, p, of a quantity which is

measured with error. For example, this may be the concentration of Pb in

drinking water. The least squares estimator of p is compared with robust

estimates over a variety of realistic error distributions in chemistry.

Simulation allows examination of the efficiency of an estimation procedure

"." -as a function of the error distribution. Additionaly, the arguments

coinonly used to support least squares estimation are critically examined.
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EXPERIMENTAL

Robust estimation The least squares estimate of p is the arithmetic

mean. This is often denoted by i and referred to simply as the mean. A

robust estimate of p can be obtained from the weighted mean of the

observations using the Huber weight function. This is not the only method

of robust estimation, nor necessarily the best, but will serve to

illustrate the potential advantages of robust estimation. This approach is

also conceptually simple and easy to implement.

I nw xix = (1)

n

Huber's weight function is defined by

1 Irl < kS

(kS)/Irl Irl > kS

where r is the residual (i.e., difference between observed and predicted

responses), k (the tuning constant) determines how harshly large residuals

are treated, and S is an estimate of the standard deviation. The

evaluation of weights requires an estimate of p. The initial estimate used

in the present work is the median.

The most common measure of standard deviation is the root mean square

of the residuals. This is the optimal estimator for a normal error

distribution, but rapidly loses its advantages over other estimators under

even slight deviations from normality(19). Additionally, a single large

residual can drastically change the value of the estimator. The measure of
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standard deviation used in the present work Is the normalized median of the

absolute deviations:

S = 1.48 * median(Irtl] (3)

Figure 1 shows a graph of Huber's weight with k=1.5 as a function of

the residual normalized by the standard deviation. Observations within 1.5

standard deviations of the predicted value receive full weight. (For a

normal error distribution, 87% of the errors fall in this region(20).)

Observations outside this range receive smaller weights as they become less

consistent with the remaining observations. The choice of a value for k is

a compromise between two opposing tendencies: smaller values of k are more

efficient for non-Gaussian errors, but less efficient when the errors are

actually from a Gaussian distribution(14).

Simulated Data Four hundred different error distributions were

simulated on a VAX 8300 computer. Each distribution is a combination of

two Gaussian distributions:

E = (1-Q) N(O,1) + a C N(O,1) (4)

where a is the probability of contamination, C is the degree of

contamination, and N(0,1) denotes the standard normal error distribution.

These error distributions, referred to as contaminated normals, are a

mixture of observations from a normal error distribution with a = 1 with

probability 1-a and from an error distribution with a = C with a

probability of a. Values of C less than, equal to, and greater than one

correspond to error distributions narrower than, identical to, and wider
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than the standard normal (i.e. Gaussian) distribution. This work used

values in the range 0 < a < 0.20 and 0 < C < 6. Figure 2 presents the

ideal error distribution and the most extreme distribution used. The use

of the standard normal as a reference is completely general and does not

affect the conclusions reached.

Gaussian errors were generated by combining the methods of Wichmann

and Hill(21) and Beasly and Springer(22). Three simple multiplicative

congruential generators produce numbers uniformly distributed between 0 and

1. These random numbers are transformed into normal random deviates by the

method of Beasly and Springer. Both algorithms are written in FORTRAN. and

are machine-independent. A histogram of 1000 simulated errors is shown in

Figure 3, along with the theoretical distribution. Agreement between the

two is excellent.

RESULTS

This paper considers three statistics, each of which is a valid

estimator of M. However, each statistic is not equally effective in

extracting the information encoded in analytical signals. Each estimator

is a function of several random variables, and is therefore a random

variable Itself. By repeatedly simulating sets of "experimental

measurements", it is possible to generate the distribution of the estimates

themselves.

For each error distribution, 5000 simulated data sets (each containing

10 observations) were analyzed by the arithmetic mean, median, and H15

estimators. (HIA5 is shorthand notation for the weighted mean using Huber

weights with k = 1.5.) The variance of' each procedure was evaluated for
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each error distribution (i.e. each combination of a and C). For example,

the variance of the arithmetic mean is given by

Var(mean;a,C) = Z000( i - P)2/ 5000 (5)

The efficiency of the Huber and median estimators are defined relative to

the arithmetic mean by

Eff(H15;a,C) = Var(mean;a,C)/Var(H15;a,C) (6)

Eff(median;a,C) = Var(mean;a,C)/Var(median;a,C) (7)

The relative efficiencies of the H15 and median estimators are shown in

Figures 4 and 5, respectively. The increase in precision is particluarly

dramatic when the narrow range of distributions studied around exact

Gaussian errors (see Figure 2) is considered. Each error distribution

studied was "close" to Gaussian and symmetric. Intoduction of asymmetry

would have further deteriorated the precision of the mean(14).

The relative efficiency measures the precision of an estimator, such

as the Huber or median, relative to the mean for the same number of

observations. For an ideal Gaussian error distribution, the relative

efficiencies of the H15 and median estimators would be -.95 and .67,

respectively. Under the most exterme conditions studied in this work, the

relative efficiency of the H15 and median were 3.25 and 2.73. Thus, the

variance of the estimated value of p using the arithmetic mean is 3.25

times that of the Huber estimator, on the average.



8

Figure 6 shows a contour plot of the relative efficiency of the H15

estimator as a function of the probability of contamination and degree of

contamination. Dashed contours denote regions where the arithmetic mean is

more precise, while solid lines denote regions where the H15 estimator is

more precise. In view of the greatly enhanced precision of robust

estimation under slight deviations from normality, the small premium under

ideal conditions appears quite worth the improved efficiency of robust

estimation under nonideal conditions.

DISCUSSION

The prevalent attitude among chemists seems to be that rejection of

erratic data points provides sufficient protection against nonnormal error

distributions and justifies the automatic use of least squares procedures.

The reasons given in support of least squares estimators deserve

examination. Least squares statistics are easy to compute; in fact, this

was one reason for the historical acceptance of least squares. However,

with the proliferation of laboratory microcomputers, or even pocket

calculators, ease of computation is no longer of primary importance.

A second reason for the widespread belief in least squares is a result

of a misintrepretation of the Gauss-Markov theorem(23). This theorem

states that the best linear unbiased estimate of p is the sample mean,

whatever the error distribution. This is frequently intrepreted by

nonstatisticians to mean that the sample mean is the best of all

estimators. The important words in the Gauss-Markov theorem are linear and

4unbiased. A linear estimator is one which is a linear combination of the

observed values. However, their is no inherent reason to require

Si°.
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linearity. As has been shown, insistence on linearity can result in a loss

of precision.

Since least squares is the optimum estimation procedure for normally

distributed errors, a third argument is that it should be almost optimum

when the errors are approximately normal. The Central Limit Theorem states

that the sum of a "large" number of independent random variables (i.e.,

errors) is approximately normal regardless of the distribution of the

individual random variables(20). Experimental errors are the sum of many

small independent errors. However, these small errors often have widely

different variances and the "approximately" normal distribution of their

sum is closer to a long-tailed distribution. Studies over the past 15

years have shown the arithmetic mean to be significantly less efficient in

these situations. The error distributions used in this work have only

slightly longer tails than the normal distribution, yet clearly demonstrate

the loss of precision in the arithmetic mean.

Finally, it is interesting to compare the present relationship between

the arithmetic mean and the normal error distribution with the historical

relationship. Gauss(23) introduced the normal, or Gaussian, error

distribution in 1821. He argued that it was impossible to determine the

most probable value of an unknown quantity unless its error distribution

was known. Without such knowledge, the only recourse was to assume a

distribution in a "hypothetical" fashion. Gauss preferred to take the

opposite approach and to look for that distribution which would make the

arithmetic mean the best estimator. Thus, the arithmetic mean was used to

justify the normal error distribution.

The method of least squares has proven very useful for many years.

This procedure is often motivated as being the maximum likelihood estimator
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for a Gaussian error distribution. Methods for robust estimation do not

represent an abandonment of traditional data reduction procedures.

Estimation using robust weights is attractive since it represents the

maximum likelihood estimator over a range of distributions in the

"vicinity" of Gaussian. Thus, the attractive features of the Huber

estimator do not depend on the existence of an idealized error

distribution.

CONCLUSION

Techniques based on the principle of least squares are the optimal

estimation procedures for the analysis of data possessing a normal error

distribution, but perform very poorly in situations involving a nonnormal

error distribution (see, e.g., reference 14). Almost every aspect of the

measurement process has been examined during optimization procedures.

However the validity of the assumption of normal errors has received little

attention from chemists. The present work has demonstrated that even small

deviations from normality can seriously degrade the efficiency of least

squares estimators. Only symmetric error distributions have been examined

here (more serious problems arise when the error distribution becomes

asymmetric.) The deviations are so small as to frequently occur in

practice. The effect of this can be to decrease the precision of an

analytical method or instrument which has been carefully optimized.

Robust estimation is a complementary technique which is relatively

efficient over a broad range of error distributions. This approach takes

advantage of the "a priori" knowledge that errors in chemistry lie within a

range of distributions, while avoiding the inefficiency which results from

rigid assumptions about the error distribution. These procedures more

U



closely reflect real situations, recognizing that even in careful work the

distribution of errors is not always ideal. Robust procedures do not

change the focus of data analysis, rather they are an efficient alternate

method of accomplishing traditional goals. The exact robust procedure used

is not as important as the use of some robust method. This can be a newer

robust approach, such as the Huber weight function, or a more traditional

method of examining the validity of least sqaures.

Robust methods should not be regarded as a completely automatic

procedure or a substitute for a reasonable amount of statistical knowledge,

however. Measurements which have been assigned small robust weights have

been marked for special attention, including examination of the

appropriateness of the error model as well as the possibility of erroneous

data points.

It is not the contention of this paper that improved statistical

techniques, such as robust estimation, are a substitute for good analytical

data. No statistical technique can extract high quality results from low

quality data. If the measurement process is not in control, an analyst

will benefit most by restoring the experimental conditions to their optimum

values. Conversely, when a measurement process is in control, analytical

precision can be limited by application of inefficient statistical

procedures. Robust estimation is one method of detecting incorrect

statistical models and/or error distributions. It has the advantages of

being easily implemented and understood.

... ......- .
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Figure Captions

Figure 1. Plot of the Huber weight function with a tuning constant equal to
1.5. The dashed line is the probability density for the Gaussian
error function.

Figure 2. A plot of Gaussian error distribution (_ ) and a contaminated
distribution with a = 0.20 and C - 6

Figure 3. Histogram of 1000 simulated errors. Superimposed is the

theoretical distribution for normal, or Gaussian, errors.

Figure 4. The relative efficiency of robust estimation using the Huber
weight function with k=1.5 as function of the probability of
contamination, e, and the degree of contmaination, C.

Figure 5. The relative efficiency of the median estimator as function of
the probability of contamination, E, and the degree of
contmaination, C.

Figure 6. A contour plot of the relative efficiency of the H15 estimator on
contaminated normals. Dashed lines correspond to efficiencies
less than one; solid lines correspond to efficiencies greater
than one.
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